

GLENCORE

Outburst Compliance Challenges Oaky #1 Mine MG33A_21-24c/t

Gas and Coal Outburst Seminar, Wollongong, November 2015

Oaky Creek Coal

Outline

Characteristics of the German Creek seam

The Issue – slow to drain

Management plan of attack

- Trial fraccing <u>with</u> sand proppant
- Implement some tightly spaced inseam drainage
- Consider contingencies of remote mining or grunching
- Maintain safe and efficient mining

The Action: what was actually undertaken

Gas Drainage Outcome

Conclusions

The problem zone, mid-panel Maingate 33A

The German Creek Main and the E Ply

German Creek Main section:

- Comprised of the F & G Plies
- Permeability 7 8mD at nearby test hole

Carbonaceous Mudstone band (Split):

Thickness range of 0 to 11cm over the problem zone

German Creek E ply:

- Lower permeability: 2 3mD at nearby test hole
- Higher ash content
- Higher outburst threshold than the Main section

The German Creek Main and the E Ply – specific thresholds

Gas Content Test Against Threshold Gas Test Sub Samples

German Creek Main:

900 DRI determined threshold line runs between:

- 5.7m3/t @ 100% CO2, and
- 7.7m3/t @ 100% CH4

Gas Content Test Against Threshold Gas Test Sub Samples

German Creek E ply:

900 DRI determined threshold line runs between:

- 5.81m3/t @ 100% CO2, and
- 7.53m3/t @ 67% CH4, flat thereafter to 100% CH4 until sufficient high methane coal samples become available.

The Pre-Drainage story

- Long term SIS drainage in place in late 2012 to mid 2013.
- Design flaws identified in August 2013.
- Infill UIS cross-block pattern drilled from MG33 December 2014.
- Infill UIS failed to drain adequately.
 - Down-dip to target zone through existing drained (de-pressurised) areas.
 - Low desorption pressure CO2 struggled to self de-water.
 - Some blockage issues around fault intersections.
- Became obvious that more drainage was required
 - More cross-block holes were rejected.
 - Elected to drill a tight spaced parallel pattern ahead of development.
- Slow drainage still!
- Intersections compromised some boreholes soon after drilling

History: Situation in late 2012 showing 3D seismic predicted structures, and inseam portions of SIS drilling

Pre-drainage phases: SIS followed by 2 sets of UIS

Sample section view of the down-dip cross-block UIS holes

Additional Borehole Performance

- Cores were 80 to 85% CO2
- Borehole drainage was very slow
- Area appeared to have a very low permeability
- Development forecast was not achievable with existing draining system results

Mining ceased at the 21ct line

- A sea of red 'failed' compliance cores ahead in amongst the SIS drainage gap.
- The additional UIS phases (not shown) had not rectified the situation.
- Inbye of 24ct through to 43ct, all core results were below threshold.

Where to?

- Would additional UIS be successful, given the lack of results to date?
- Fraccing? With or without sand proppant? Water only fraccing used previously, elected to trial sand.
- Fraccing lead time!
 - Sourcing of gear, and hire agreements
 - Transport to site, and site introductions, RAs and procedures.
 - Transport u/g, commissioning, and training.
- Meanwhile one heading was intensely drilled while the other prepared with a single branch-free frace hole.
- While drilling and fraccing, grunching was scoped out, and remote mining was risk-assessed and relevant procedures developed.

Critical Fraccing Issues

- Sourcing a suitable water pump
 - Longwall Salvage Pump utilised
- Adapting existing frace procedures to include the changes introduced by the use of the sand-adder
- Sourcing of appropriate sand
- Supply of hardware from CSIRO and ACIM
- Lead time for equipment mobilisation to site
- Introduction to site process
- Suitable downhole fracc locations
 - Clear of branches or close proximity to adjacent holes
 - Avoid zones of weakened or fractured coal

Planned Fraccing portions – C Hdg borehole

Sand Fraccing Equipment

Sand Adder – used to feed sand into the high pressure water lines

Down Hole packer assembly and fraccing sub

Sand Fraccing Equipment ctd

Water fracc

Hydraulic Fracture Propped with Sand

Drill-drain and Drill-fracc-drain phases: UIS from 21ct stubs

Fraccing operational notes

Safety

- pressure rated hardware
- emergency isolation points
- packer inflation and deflation
- Separate air split for the sand adder
 - sand spec, no more than 4% > 600μm, no more than 10% < 250μm
- Discharge pipework set up to cope with potentially high flows
- Manage interaction with existing drainage holes
- Monitor outcomes
 - gas flows
 - water make
 - sand make
- Hole cleaning and lining at end of fraccing phase

Updated Borehole Performance

Status of Flow from Borehole MG33a_D17_G3(period till 26/07/2015 4:00:00 PM)

There were increased gas flows in some boreholes post fraccing, but generally low and sporadic.

Abandoned planned fracc ahead of D heading

- The fraccing process ahead of C heading did demonstrate connectivity with flanking boreholes.
- Gas flows from adjacent holes did show increases, but never to the expected magnitude and not sustained.
- Decision made to halt the fraccing programme once the C heading hole was completed.
- Meanwhile, the initial flow data ahead of D heading suggested that mining could recommence there in the short term.

Compliance story

9 July - 3 August - 19 August - 27 August - full compliance

Mining completed: Section view of as-mined grade plan

D22A C/T +49m Horst Pillar Rib

Learnings - why did the zone fail to drain?

- SIS design had some weaknesses which the excellent drainage time (>2 years) could not compensate for.
- Down-dip cross-block UIS pattern struggled to de-water the seam.
- Geological mapping revealed <u>less</u> jointing, no change in cleat angles or frequency.
- No real indications that joints or cleats were infilled with minerals

Summary:

- Original drainage had flaws, replacement patterns still inadequate.
- Ground tighter than normal locally lower perm(?)
- Low pressure CO2 and low flow rates unable to self de-water in an area where several grade changes complicated the de-watering process.

Learnings – Fraccing experience with sand proppant

- The water pressure certainly opened up paths through the seam.
- Water travelled from the frace hole across to the furthest flanking borehole on the very first frace, and rapidly.
- Sand also travelled into adjacent boreholes despite attempts to halt the injection flow as soon as the sand exited through the frace sub.
- The whole process was managed by mine personnel and drilling contractors after training by an external expert.

Acknowledgements:
CSIRO
Radco Technologies
ACIM – Ground Breaking Technology
Weisstech

THANK YOU

Gas and Coal Outburst Seminar, Wollongong, November 2015