BHP BILLITON West Cliff Colliery

Gas Drainage Issues – West Cliff Area 5

Introduction / Agenda

- Presentation on inseam gas drainage issues faced by West Cliff in the Bulli (#1) seam
- Mine History / Location
- Drilling / Equipment information
- Area 5 Gas Drainage Issues
- Drilling Techniques and Issues
- Summary

Mine Details

- BHP Billiton owned- formerly KCC
- Operate in Bulli seam in Southern NSW Coalfields
- Mining Lease granted 1969
- Commenced shaft sinking 1972
- Development commenced 1976
- Longwall Production commenced 1982
- Depth approximately 480m
- Production 2mtpa 2004
- Ongoing production budgets 2.7-4mtpa
- Mining area 5 which adjoins Appin area 1

Mine Location

Drilling Information

- Develop approximately 15km per year
- 120km inseam drilling metres to support mine plan and OMP in 2004

Illawarra C Page 5

Gas Drainage Equipment

- Standard drilling / surveying equipment
- 3 Kempe drill rigs 800m to 1500m capacity
- 3 Longyear LM55 600m capacity
- 2 air machines
- Youngest machine 1994.
- 2 AMT acoustic survey tools- 1990 technology –superseded
- 2 AMT DDM mecca survey tools
- Introduce AMT Drilling Guidance System (DGS)- improved diagnostics
- Eastman single shot camera

Area 5 Gas Drainage Issues- Stage 1

- Area 5 stage 1 located in wedge of coal between original West Cliff Area 4 and Appin Area 1
- Advantage in this area of drainage via old workings
- Conventional inseam gas drainage practices in CH4 environment
- No structure of note except for a major fault 6-9m detected by seismic and later confirmed by underground drilling
- Mine plan change to step around fault

Area 5 - Stage 1

bhpbilliton

Illawarra Coal – Carbon Steel Materials

Page 8

Gas Drainage Issues – Area 5 Stage 2

- Area characterised by variability in base data
- Variable insitu content from 4 -14m3/t
- Trending away from CH4 to CO2 environment in northerly direction
- Need to understand the environment to effectively plan gas drainage and ventilation systems
- Surface borehole and seismic information complemented by underground drilling / exploration

CH4 Content

bhpbilliton

Seam Gas Content

Gas Drainage Issues – Area 5 Stage 2

- Need to step around fault
- In effect starting a new mine for development
- No routine means to pre-drain ahead of 4 continuous miners
- Improvise drilling patterns
- Trial STIS holes
- Utilise longholes, old workings for drilling locations
- Drill around and parallel to the major fault for 516 panel
- Drill longholes across to 517 panel for pre-drainage
- Drilling towards 517 detected a potential major anomaly

Area 5 - Stage 2

516 Panel Gas Drainage

- 3 heading development, 2 miners, 3 drill rigs
- Drainage achieved by means of drilling longholes around major fault from both ends
- Encountered minor areas of boggy ground at tail of the fault
- Scroll drilled boggy area
- Some temporary relief due to proximity to Appin workings
- Longholes drilled ahead of and around panel in advance of Appin workings
- STIS3 utilised in advance of Appin workings

Utilise Existing Workings for Drilling Locations -516 Panel

bhpbilliton

Illawarra Coal – Carbon Steel Materials Page 15

Gassy holes and their affect on development ventilation

- Intersecting "green or gassy holes" can be a major issue
- Development panel -10m3/s at face
- 0.4% CH4 as background
- Due to intersect hole with 100l/s
- Potential face general body
- Using I/s =10*Q*C (Q-quantity, C-concentration)
- C=10*10/100 + 0.4 = 1.4% general body

Methods of Dealing with Gassy Holes

- Risk based approach
- Monitor holes before intersection, flush as required
- Pre-cautionary zones as part of OMP process requiring vacuum, hoses etc available
- Maximise face ventilation through good standards (i.e. vent rubbers, short tube runs, large fans, venturi's)
- Intersect holes and deal with temporarily using hoses or inflatable gas bags
- Deal with permanently utilising standpipes
- Extreme cases alter mining sequence to provide full panel ventilation (eg STIS2 holing)

517 Panel Gas Drainage

- 2 heading gate road panel for LW29 & 30
- Potential anomaly identified from previous drilling
- Panel advanced to 7 line by longhole drilling from 516 panel and from within 517 panel
- Fault detected at 8 line with associated boggy ground
- Scroll drilling implemented for approximately 700m of panel advance to 12 line
- Trial large diameter auger drilling
- STIS2 utilised for pre-drainage from 19 to 28 line
- Fan drainage and longholes utilised to drain to extent of panel

517 Panel Scroll Drilling

Page 19

517 Panel Drilling Patterns

Page 20

517 Panel and it's affect on the mine plan

- 18 months to negotiate 7-12 line through faulted area
- Result was a contingent change to the mine plan
- Led to minor intake gas contamination issues with 516 panel on flood intake (due to mining contents just below threshold)
- Intake gas issues resolved by means of locating intersected holes and placing on vacuum
- Implemented an advancing / retreating longwall for LW29
- Longwall downhill, belts inbye then outbye
- Compromised longwall and overall mine ventilation
- Stepped tailgate for LW31

Scroll Drillling

- Standard BWJ drill rods with custom designed scroll pattern welded to rods to enable rod handling
- 90m holes possible without steering control
- Best results achieved when drilling uphill into boggy ground to enable fines to clear.
- Typical 7 hole pattern 10 days
- Drainage Lead time 2-3 weeks
- Core area and authorise for normal mining
- Remove rig and mine
- Shunt miner, flit in drill rig and do it all again
- And again....
- And again....
- And again!!!!!

Scroll Drilling

Surface to Inseam Drilling Concept

bhpbilliton

Illawarra Coal – Carbon Steel Materials Page 24

STIS2 & 3

- STIS2 drilled for 517 panel due to inability to drain area with conventional underground drilling
- Drilled down the middle of the gate roads to provide maximum drainage
- Peak flows of 250l/s
- Average flow 80l/s
- Successfully drained 19-28 line from virgin to 8m3/t over 6 month timeframe.
- STIS3 for 516 panel less successful
- Peak flows 100l/s & less leadtime

STIS 1,2,3

STIS 2 Hole Flows

STIS 2 - WEST CLIFF 517 PANEL

Page 27

STIS4

- Designed as a quad lateral hole for the extension of 517 panel to accommodate LW30
- Design to increase drainage time by approx. 10-12 weeks in comparison to underground drilling capabilities
- Designed without a beacon (vertical) hole due to timing
- Designed to be intersected by underground drilling
- Achieved a single hole and partial branch due to drilling, budgetary and timing issues

STIS4

Illawarra Coal - Carbon Steel Materials Page 29

Auger Drilling

- Trial of large diameter auger drilling to enhance gas drainage and improve lead times
- Attempted both 1.5m and 0.9m diameter holes up the centre of the roadways
- Issues with rig set up time, hole stability, hole length (30m holes achieved)
- Complemented existing gas drainage patterns
- Further development of technique required away from production environment.

Large Diameter Auger Holes

518 Panel Drainage

- 2 heading gate road development -4km
- Potential for intake gas issues if poorly drained
- Gas drainage achieved by fan holes from 517 panel
- Fan holes affected by non development of 517 panel and location of fault
- Harbour bridge drilled to effectively drain 7-13 line
- Drilling required up to 150m of stone drilling to negotiate the fault in LW31 block

518 Panel Drilling

519 Panel and Beyond- "The Ideal"

- Pre-drainage to be achieved by means of either conventional fan holes or by STIS holes
- Operating Excellence Project on Gas Delays to Development
- Project Goals
- No gas delays to development due to seam gas content by June 2006
- 80% confidence we have full knowledge of geology 3 years in advance i.e. 2 longwall blocks
- 95% confidence that we have full knowledge that the gas drainage system is draining gas satisfactorily 1 year in advance of mining

"The Ideal" - Stage 1

"The Ideal" – Stage 2

bhpbilliton

"The Alternative Ideal" - STIS

- Possible expansion of STIS drilling program
- STIS has potential to open up mining areas well in advance of mining
- Issues with STIS holes:-
- STIS holes don't remove the requirement for underground drilling
- At 500m depth STIS holes can be costly
- STIS holes are not without risk
- For example second leg of STIS3, STIS4
- Potential loss of drilling gear
- Potential issues with underground intersection

Summary

- Ultimately the success of inseam gas drainage lies in removing it from the critical path of mining
- Routine drilling patterns and equipment haven't significantly changed over the last 15 years.
- The appropriate techniques and tools to deal with boggy or difficult to drain areas are still in their infancy, resulting in huge financial impacts to any operation encountering them
- Creative application of gas drainage techniques have been required to achieve threshold gas levels for normal mining at West Cliff Colliery
- The opportunity to remove the geological element of surprise, as well as the interaction between development and drilling, is a major goal that is actively being pursued

The End

