Opportunities for Better Gas Management

ACARP Gas and Outburst Workshop Mackay, 16th September 2005 Mike Slater, GeoGAS Mackay

Opportunities for Better Gas Management

- Gas Management Milestones 1900 to 2000
- Current Gas Management Practices 2005
 - In-seam drainage economics
- Future Opportunities 2010?
 - Parametric study of differing drainage strategies

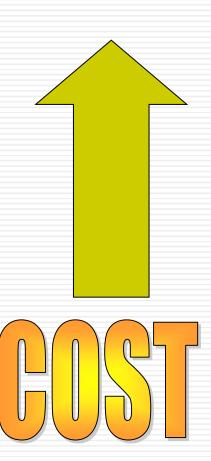
Australian Gas Management – 1900 to 2000

- 1925 Metropolitan Colliery
 - Following fatal outburst, 30 m in-seam holes ahead of face
- 1930+ Balmain Colliery
 - Gas utilisation drainage via vertical wells to 1386m (post closure)
- □ 1954 State Mine
 - Following fatal outburst, 80 m in-seam holes ahead of face, vacuum on drainage holes, quantitative gas desorption methods (*Biggam*, *Robinson & Ham*)
- □ Late 1970's to early 1980's
 - Numerous significant studies into gas reservoir character and drainage efficiencies at Leichhardt, Bowen #2, Collinsville (Gray, Williams)
 - Initial long-holing drill trials at Collinsville

Australian Gas Management – 1900 to 2000

- Late1970's West Cliff Colliery
 - Gas drainage feasibility studies for outburst control (Lama, Marshal, Griffith)
- 1980 West Cliff Colliery and 1982 Appin Colliery
 - Surface gas drainage vacuum plants, first mine-wide pre-drainage and post-drainage systems
 - Cross-measure post-drainage of Balgownie and Wongawilli seams
- □ 1982 West Cliff Colliery
 - In-seam hole driven to 471 m with Acker "Big John" rig (ACIRL)
- Late 1980's
 - Use of down-hole motors, down-hole surveying, in-seam directional drilling to 1000 m
 - In-house drilling teams established, emerging U/G drilling contractors

Australian Gas Management – 1900 to 2000


- □ 1990's
 - Industry-wide adoption of fully surveyed, cross-panel pre-drainage holes using DHM technology at 300 m to 450 m (but up to 1500 m)
 - "Maturation" of in-seam drill contracting business
- 1992 Central Colliery
 - Surface vacuum plant for in-seam drainage
 - Mobile goaf drainage plant using liquid ring pump, cased to below tertiary
- 1997 Dartbrook Colliery
 - Surface vacuum plant for in-seam drainage (1996)
 - Mobile CO₂ goaf drainage plants and slider casing to goaf

- 2000's Moura Seam Gas and Grasstree Colliery
 - Trials of tight radius drilling technologies
- 2001-2004
 - Surface to in-seam medium radius drilling implemented at Moranbah
 Gas Project by CH4 Pty Ltd and Mitchell Drilling
 - Emerging SIS drilling contractors
- **2005**
 - MRD pre-drainage adopted by Oaky Creek, Grasstree, Newlands, Moranbah North, West Cliff and Beltana
- □ So in summary…..

- Surface to In-seam Pre-Drainage (SIS)
- In-seam Pre-Drainage (UIS)
- In-seam Post-Drainage
- Surface Post-Drainage
- Mains Ventilation Dilution

Mains Ventilation Dilution

Pros

- Most cost effective (Fractional cents per tonne mined impost)
- Mature technology engineered solution, universally applicable
- Surface based, divorced from mining operations

- Suited to "baseload" emissions, not acute emission sources
- Not readily scalable (beyond additional fans, VVVF drives)
- Ultimately limited by rising pressure differentials, airway velocities, propensity to spontaneous combustion hazards
- Drained gas in highly dilute form not easily utilised

Surface Post Drainage

<u>Pros</u>

- Cost effective (Cents per tonne mined impost)
- Potential for useable seam gas purities (>40% CH₄)
- Surface based (potentially self-powered)
- Centralised or mobile and modular, as required

- Potential for geotechnical constraints and application limits
- Not divorced from operations, additional hazards to control
- Suited to "baseload" emissions, not acute emission sources

In-seam Pre-Drainage (UIS) and Post-Drainage

Pros

- Potential for high seam gas purities
- Mature technology bonus of exploration data
- Potential for optimised permeability and drainage performance
- Can be scheduled to short lead-times (sometimes <100 days)

- High operating costs (Dollars per tonne mined impost)
- Drilling schedules and logistics "chained" to development, but also significant impost to mining operations
- Potential for drilling induced hazards to operations
 - Intersection, location and treatment of high flow / blocked boreholes
 - "Stub" emissions / excessive borehole flows
 - Loss and recovery of equipment
 - Spontaneous combustion potential / Water in-rush
- Borehole damage from drilling near desorption pressure thresholds

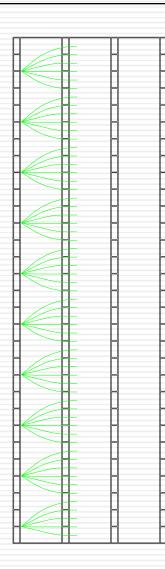
Surface to In-seam Pre-Drainage (SIS)

<u>Pros</u>

- Potential for high seam gas purities
- Potential for optimised permeability and drainage performance
- Divorced from mining operations
- Potential for reduction in drainage costs where lead-time permits
- Drilling at reservoir gas pressures, limited damage to boreholes (potential for under-balance drilling)
- Increased mining certainty from drill control, exploration data

- High, up-front costs (Dollars per tonne mined impost)
- New technology, new equipment, new management practices
- The KISS principle
- Potential for drilling induced hazards to operations
- Long lead-times required for economic feasibility (+1000 days)
- May not be applicable given surface constraints, adverse reservoir conditions

□ SIS Pre-Drainage versus UIS Pre-Drainage

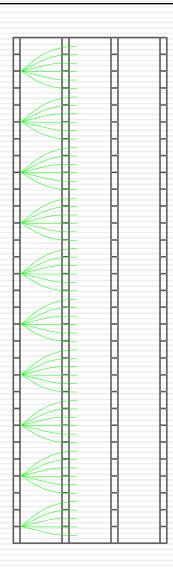

- SIS pros outweigh cons
- SIS requires long lead times
- UIS may induce poor drilling / drainage conditions
- UIS constrained in logistics, scheduling and application by mining schedule
- SIS outcomes potentially superior given
 - Adoption of the new SIS technologies & management practices
 - Engineered assessment of gas reservoir behaviour
 - Designed "draw-down" strategies
 - Active fitting & re-projection of gas reservoir behaviour during drainage

Critical factors – common to both approaches

- Economics
- Potential for drilling induced hazards to operations

Current Economics - UIS Drainage

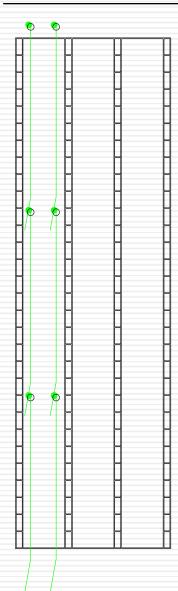
- □ 3 km LW, 320 m deep, 250 m face, 40 m pillars
- In-seam development pre-drainage via 10 stubs
- 6 hole fan pattern, 50 m spacing (300 days)
- Holes 330-390 m long (360-430 m with branches)
- Drilling cost per stub (inc conduit, standpipes & cores & delays) = \$214,160 (Aus\$ 2005)


```
= $95 / m
```

- Incl. of stub driveage = \$115 / m
- Incl. of stub preparation = \$125 / m
- Incl. of equipment hire = \$135 / m
- Incl. of stub re-support = \$145 / m
- Incl. of stub gas riser = \$180 / m

Total direct cost 10 stubs, 1 LW = \$4.56 Million

Current Economics - UIS Drainage


Total direct cost 10 stubs, 1 LW = \$4.56 Million

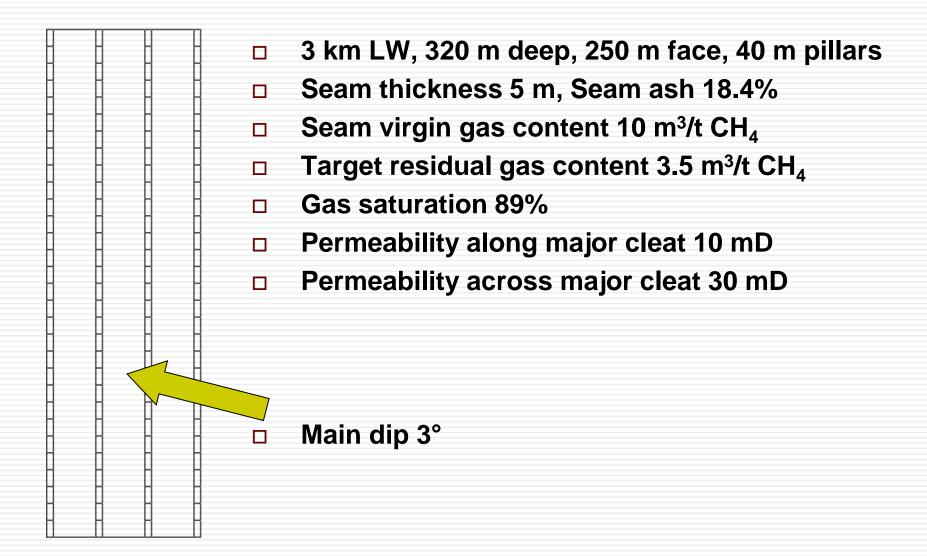
Indirect costs not included:-

- Lost development from drilling induced gas contamination of headings
- Losses to development caused by negotiation of in-seam boreholes
- Loss of equipment and delays induced by poor drilling conditions (at gas desorption pressures)
- Internal cost <= \$500,000 per annum in dedicated gas management staff and drainage officers</p>

Current Economics - SIS Drainage

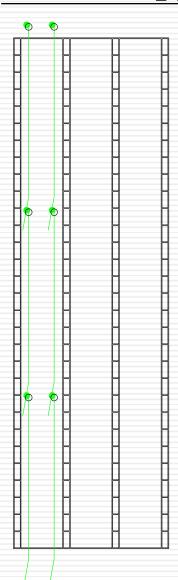
- 3 km LW, 320 m deep, 250 m face, 40 m pillars
- 6 SIS holes on 150 m spacing
- Full panel drainage on 2000 day term
- 1000 m laterals in-seam, total ~ 1400 m
- Raw drilling cost ~ \$100 / m
- Cost per lateral (inc casing to seam & in-seam casing) = \$260,000 (Aus\$ 2005) = \$260 / m
- Incl. of production well = \$347 / m
- Incl. of pump, manual monitor& automated control equip = \$417 / m

Total direct cost 6 holes, 1 LW = \$2.50 Million Cost inc manual monitor for term = \$4.60 Million Cost inc remote monitor for term = \$4.80 Million


Future Opportunities – Gas Management

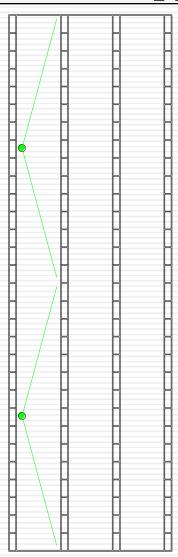
SIS Pre-Drainage

- Costs have actually risen in last 10 years \$70 / m to \$100 / m
- SIS contractors dealing with
 - Chronic manning shortages, high labour costs
 - Higher steel costs
 - Higher fuel costs
 - Higher equipment costs
- Improved economics and drainage outcomes will come from "smarter":-
 - Reservoir mapping
 - Drainage design
 - Drill execution
 - Hole completion
 - Flow commissioning
 - Drainage operations



Future Opportunities – SIS Parametric Study

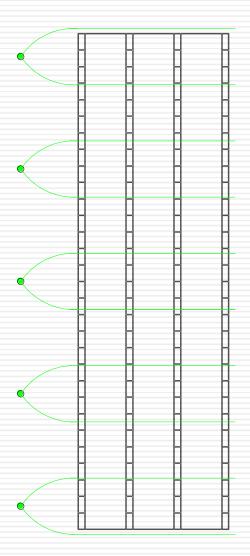
Future Opportunities – SIS Parametric Study #1


- 6 SIS holes on 150 m spacing
- 1000 m laterals in-seam, total ~ 1400 m
- 6000 m laterals per longwall
- 6 production wells per longwall
- Holes aligned with gateroads (along major cleat)
- Minimal gateroad intersection of laterals
- Effective permeability 10 mD
- Constraints on spacing / drainage optimisation

Parametric Study #1

- Full LW panel drainage on 2000 day term
- Total cost inc remote monitor for term
 - = \$4.80 Million per LW

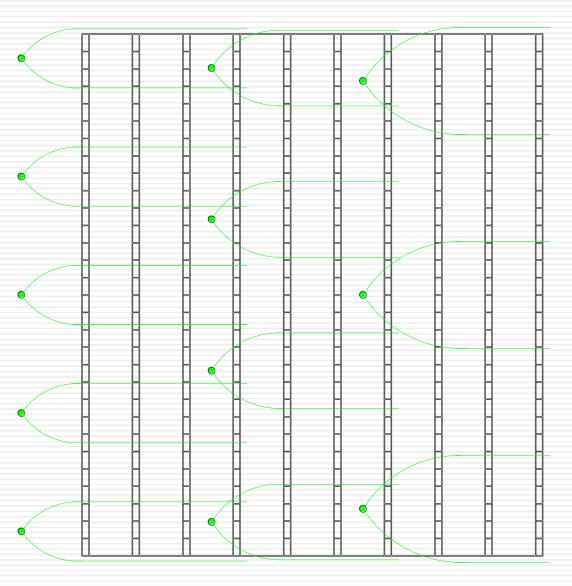
Future Opportunities – SIS Parametric Study #2


- 4 SIS holes on 350 m spacing
- □ 750 m laterals in-seam
- 3000 m laterals per longwall
- 2 production wells per longwall
- Holes aligned with gateroads (along major cleat)
- Minimal gateroad intersection of laterals
- Effective permeability ~10 mD
- Constraints on spacing / drainage optimisation

Parametric Study #2

- Full LW panel drainage on 5500 day term
- Total cost inc remote monitor for term
 - = \$7.20 Million per LW

Future Opportunities – SIS Parametric Study #3


- 10 SIS holes on 340 m spacing
- □ 1200 m laterals in-seam
- 4000 m laterals per longwall
- <2 production wells per longwall</p>
- Holes aligned across major cleat
- Maximum gateroad intersection of laterals
- Effective permeability 30 mD
- Potential for optimising drill patterns

Parametric Study #3

- Three LW panels drained on 2000 day term
- Total cost inc remote monitor for term
 - = \$3.80 Million per LW

Future Opportunities – SIS Drainage

- Increased hole spacing
- 1200 m laterals in-seam
- 2700 m laterals per LW
- <2 production wells per LW
- Holes aligned across major cleat
- Maximum gateroad intersection of laterals
- □ Total cost = \$3.30 Million per LW

Opportunities for Better Gas Management

SIS Pre-Drainage versus UIS Pre-Drainage

- Longer drainage terms required for SIS
- Drainage outcomes might be achieved at comparable cost
- Given
 - Engineered assessment of gas reservoir behaviour prior to drainage
 - Engineered design of "draw-down" and gas/water production strategies
 - Adoption of the best SIS technologies & management practices
 - Fitting & re-projection of gas reservoir behaviour, and adaptive operations during drainage

There is potential for superior drainage outcomes with SIS

Challenge remains

- SIS holes must be oriented to maximise not minimise permeability
- Address potential for drilling induced hazards to operations
 - Re-working of holes with dedicated SIS rigs
 - Grouting of holes on completion
- Routine SIS drainage of adjacent seams to facilitate longwall extraction should be considered

Opportunities for Better Gas Management

ACARP Gas and Outburst Workshop Mackay, 16th September 2005 Mike Slater, GeoGAS Mackay