EMERGENCY SEALING & SURFACE FAN PROTECTION

PETER WYNNE
MINING CONSULTANT

PIKE RIVER DISASTER, 2010

PIKE RIVER - ISSUES RELEVANT TO N.S.W. MINES

	NSW MINES
RESCUE STRATEGIES, eg SELF ESCAPE	OK
EMERGENCY MANAGEMENT, eg I.M.T.	OK
INFRASTRUCTURE/EQUIPMENT, eg INERTISATION	OK
EMERGENCY SEALING	X
SURFACE FAN EXPLOSION PROTECTION	X

PIKE RIVER-IMPROVISED SEAL AT PORTAL

PIKE RIVER - INEFFECTIVE EXPLOSION PROTECTION

STANDBY FAN

BEFORE AFTER

EMERGENCY SEALING OBJECTIVES

- NOT TO SAVE LIVES
- TOOL FOR I.M.T. TO CONTROL SITUATION
- TO AVOID COMPLETE LOSS OF MINE
- TO ENABLE SAFE RE-ENTRY
- TO AVOID ONGOING NEGATIVE PUBLIC RELATIONS

EMERGENCY SEALING – PREVIOUS NSW LEGISLATION

Coal Mine Health and Safety Regulation 2006, Clause 45(b):

- mine has to have facilities for:

"(x) the rapid and effective sealing of the mine (while at the same time allowing for re-entry to the mine),"

THIS WAS ONLY RIGOROUSLY COMPLIED WITH AT MINES LIABLE TO SPON COMBUSTION, eg ULAN, WAMBO, BLAKEFIELD SOUTH.

EMERGENCY SEALING – QUEENSLAND REGULATIONS

- 70kPa RATING
- WHEN DEPLOYING, NO PERSONNEL EXPOSURE TO "LINE-OF-FIRE"
- PROVISION TO ATTACH AN INERTISATION SYSTEM
- PROVISION FOR MONITORING BEHIND SEALS
- AIRLOCK FOR RE-ENTRY
- ANNUAL TESTING OF OPERABILITY
- FOR SHAFTS, SEALS CAN BE AT SEAM INSETS

MOST QLD MINES APPEAR TO (GENERALLY) COMPLY, ALTHOUGH WITH SOME SHORTCOMINGS.

EMERGENCY SEALING – CURRENT NSW LEGISLATION

WHS (MINES) REGULATION, 2014: CLAUSE 68

- NO kPa RATING SPECIFIED
- RISKS OF SEALING ACTIVITIES TO BE MANAGED
- ANNUAL TEST OF AIRLOCKS & INERTISATION CONNECTIONS
- ANNUAL MODELLING SUITABILITY OF INERTISATION LOCATIONS

RECOMMENDATION: USE QUEENSLAND'S AS THE STANDARD!

EMERGENCY SEAL - BARE DOWNCAST SHAFT "LID"

EMERGENCY SEAL - STEEL DOORS AT PORTAL

EMERGENCY SEAL - STEEL DOOR IN DRIFT

EMERGENCY SEAL - DRIFT AIRLOCK FOR RE-ENTRY

EMERGENCY SEAL - INERTISATION CONNECTION

EMERGENCY SEAL - "AIRBAG" FOR ROADWAY

EXAMPLE - "PROFILED" DOORS

EXAMPLE: PRE-INSTALLED FRAME FOR FREE-FLOWING MATERIAL

EXAMPLE: PRE-INSTALLED FRAME FOR FREE-FLOWING MATERIAL

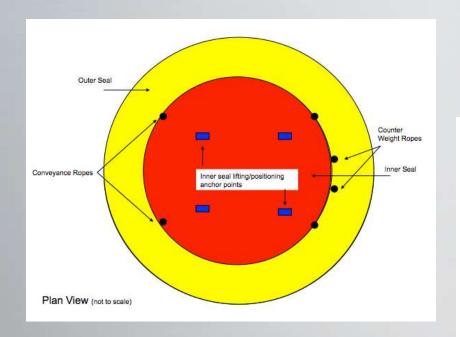
CONCRETE PIPE

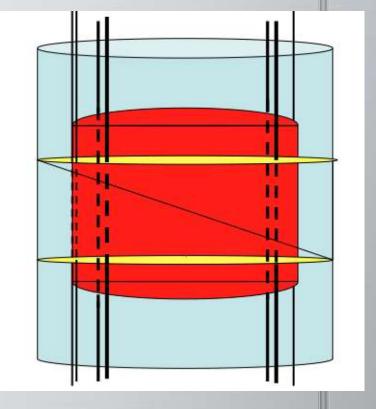
QLD EXAMPLE: PRE-INSTALLED FRAME FOR FREE-FLOWING MATERIAL

INTAKE SHAFT WITH WINDER, etc - SEAL OPTIONS

1. CLAD HEADFRAME

- EXPENSIVE (70 kPa RATING)
- MAJOR VENTILATION RESTRICTION
- ENABLES RE-ENTRY USE (WITH AIRLOCK)


2. AIRBAG SEAL


- THEORETICALLY POSSIBLE, BUT UNLIKELY IN REALITY
- PREVENTS USE OF SHAFT FOR RE-ENTRY

3. AT SEAM ENTRY (STEEL DOORS, AIRBAGS, etc)

- CHEAPEST OPTION
- ENABLES USE OF WINDER FOR RE-ENTRY (WITH AIRLOCK)
- . DECOMMENDED OPTION

INTAKE SHAFT WITH WINDER, etc. - AIRBAG OPTION

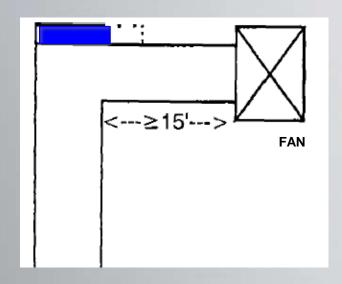
UPCAST/FAN SEAL EXAMPLE REPLACE ELBOW WITH "LID"

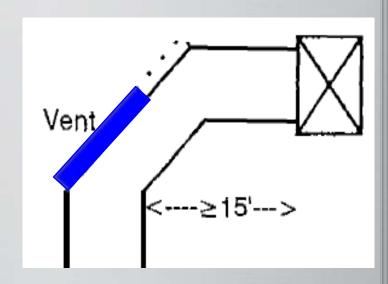
upcast/fan seal --"Guillotine" door in fan duct (China)

FAN EXPLOSION PROTECTION - DESIGN CRITERIA

CURRENTLY, NO AUST. REGS OR STANDARDS FOR RATINGS:

- EXISTING PRACTICE DEPENDS ON WHAT INCLUDED IN FAN APPROVALS (CONSISTENCY?), BASED ON RISK ASSESSMENT.
- DERIVED FROM EXPERIENCE(?) &/OR PRACTICE.

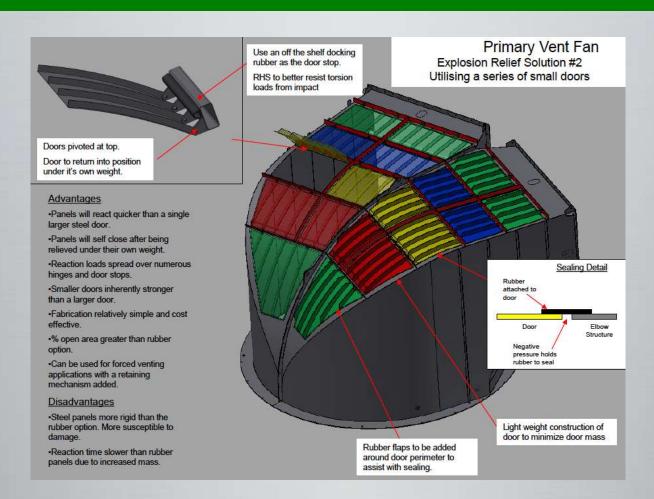

BEST "STANDARD" APPEARS TO U.S.B.M. GUIDELINE:


- STILL LACKING SPECIFIC NUMERICAL DESIGN CRITERIA, eg:
- "Each main mine fan shall be protected by one or more "weak" walls or explosion doors."
- HOWEVER, THE DESIGN GEOMETRY SEEMS RATIONAL:

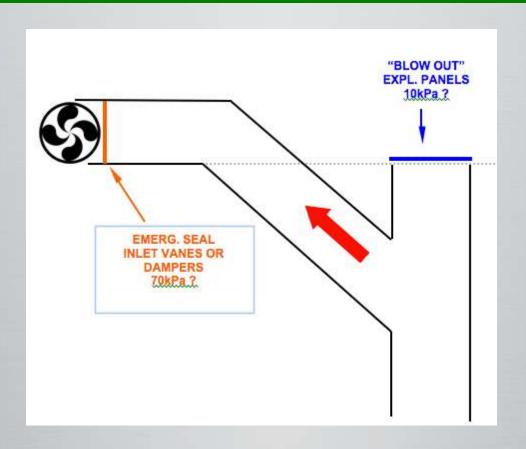
SCOPE FOR DETERMINATION OF RIGOROUS STANDARD! PhD TOPIC?

FAN EXPLOSION PROTECTION - USBM LAYOUT GUIDELINES

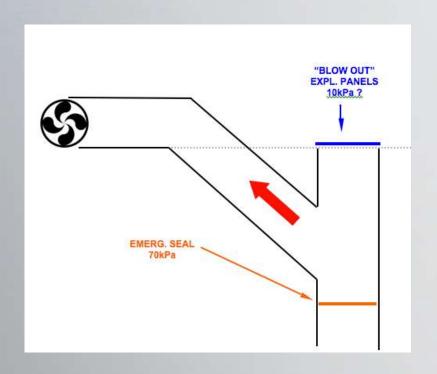
- AREA OF EXPLOSION PANEL(S) ≥ <u>PROJECTED</u> AREA OF APPROACH SHAFT/DUCT/ROADWAY
- FAN ≥ 15ft FROM PANELS

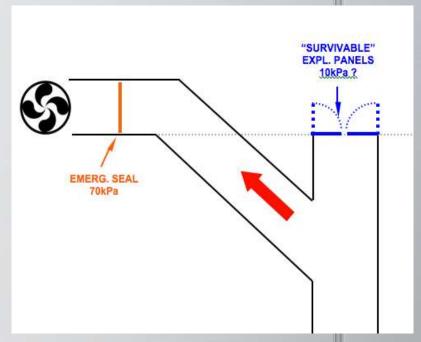


FAN EXPLOSION PROTECTION - EXAMPLE OF "BLOW OUT" PANELS


ABOVE UPCAST SHAFT, 10kPa "TRIGGER" PRESSURE

FAN EXPLOSION PROTECTION - IMPROVED "SURVIVABLE" DESIGN




INTERACTION OF SEALS & EXPLOSION PROTECTION

THIS LAYOUT NOT RECOMMENDED

INTERACTION OF SEALS & EXPLOSION PROTECTION

RECOMMENDED LAYOUTS

FAN EXPLOSION PROTECTION - SIMPLE, EFFECTIVE DESIGN (XUANDONG MINE, CHINA)

Fan Explosion Protection — Simple, Effective Design (Xuandong Mine, China)

SEALING & EXPLOSION PROTECTION SUMMARY OF RECOMMENDATIONS

SEALS

- •70 kPa RATING FOR SEALS
- NO "LINE-OF-FIRE" EXPOSURE DURING SEAL IMPLEMENATION
- ALLOW FOR RE-ENTRY & INERTISATION AT SEAL(S)
- ANNUAL TESTING OF OPERABILITY

EXPLOSION PROTECTION

- INTERACTION OF SEALS & FAN EXPLOSION PROTECTION MUST BE CONSIDERED, SO THAT EXPLOSION PROTECTION DOESN'T NEGATE SEALING
- "SURVIVABLE" EXPLOSION PROTECTION RECOMMENDED

KEEP IT AS SIMPLE AS POSSIBLE